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Abstract One of the more provocative realizations that
have come out of the genome sequencing projects is that
organisms possess a large number of uncharacterized or
poorly characterized enzymes. This finding belies the com-
monly held notion that our knowledge of cell metabolism is
nearly complete, underscoring the vast landscape of unan-
notated metabolic and signaling networks that operate under
normal physiological conditions, let alone in disease states
where metabolic networks may be rewired, dysregulated, or
altered to drive disease progression. Consequently, the func-
tional annotation of enzymatic pathways represents a grand
challenge for researchers in the post-genomic era. This
review will highlight the chemical technologies that have
been successfully used to characterize metabolism, and put
forth some of the challenges we face as we expand our map
of metabolic pathways.
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Introduction

What is a metabolic network and why do we care about it?
A metabolic network comprises the biochemical and regu-
latory interactions of all of the biochemical processes inside
of a cell, tissue, or organism. While in its simplest form, a

metabolic network consists of enzymes converting substrate
metabolites to products (e.g., hexokinase converts glucose
to glucose-6-phosphate), a series of enzymes may catalyze
the conversion of one metabolite, through a series of inter-
conversions, to form a penultimate product (e.g., glucose to
pyruvate by glycolysis)—a metabolic pathway. These path-
ways can then interact with other biochemical pathways to
generate a plethora of metabolites which can be used for
synthesis of cellular building blocks, regulatory metabolites,
and signaling molecules [e.g., glycolysis and tricarboxylic
acid cycle to generate ATP]—a metabolic network. The
regulation of enzyme activities within these biochemical
networks is subject to multiple levels of regulation, includ-
ing transcriptional, translational, post-translational, and al-
losteric processes which, in turn, influence metabolite levels
or rates of reactions through metabolic pathways, i.e., met-
abolic flux. How biochemical pathways are wired and how
these pathways interact with each other are also tightly
regulated, and while we do not completely understand the
underlying regulatory mechanisms, the wiring of metabolic
networks are distinct between each tissue and under differ-
ent (patho)physiological states.

As we will show in this review, many human diseases
such as obesity, diabetes, atherosclerosis, cancer, pain, in-
flammation, and degenerative diseases possess dysregu-
lated, rewired, or even neomorphic networks that directly
contribute to disease progression [15, 30, 40, 56, 57]. Iden-
tifying and manipulating critical nodes in these dysregulated
biochemical networks have given rise to enzyme targets that
show promise in combating these “metabolic diseases.”
However, our efforts in identifying and annotating these
dysregulated metabolic pathways in disease, let alone un-
derstanding biochemistry in normal physiology, is hindered
by our incomplete understanding of enzyme function and
the metabolites, pathways, and networks that they control
[73]. In our biochemistry courses, we learn of standard
metabolic pathways occurring inside of a cell which gives
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the disarming impression that we know all the individual
components of metabolism and how they are interwoven.
However, genome sequencing efforts have clearly shown us
that there is a large swath of unannotated biochemical path-
ways [69, 73]. Upon further scrutiny, even the seemingly
characterized biochemical pathways are nowhere near com-
pletely understood in terms of their physiological roles in
vivo in living systems.

This brings us to our next question, which will be the
focus of this review. How do we interrogate metabolic path-
ways and integrate them into larger networks? The answer
to this question as well as addressing the aforementioned
challenges in the field of metabolism lies in the integrated
use of modern proteomic and metabolomic approaches cou-
pled with the advancements in chemical tools that have
provided penetrating insights into novel aspects of metabo-
lism in (patho)physiology. This review will discuss chemi-
cal approaches that have arisen to investigate metabolism
and how these technologies have been used to provide
insights into enzyme or metabolite functions.

Probing the functional state of the proteome

Systems biology approaches such as DNA microarrays and
mass spectrometry (MS)-based proteomics have provided
in-depth information about key components of metabolic
and signaling pathways that are relevant to disease patho-
genesis [11, 25, 78]. However, these technologies have
limitations in their scope of characterizing enzymes and
metabolites. This is because enzyme activity is regulated
not only transcriptionally, but also post-translationally and
by endogenous and exogenous inhibitors, which are poorly
accounted for by standard gene and protein expression pro-
filing [36]. Furthermore, a large swath of the proteome
remains uncharacterized and is therefore difficult to assem-
ble into larger biochemical networks [73]. Also, many
enzymes display difficult physicochemical properties that
complicate their analysis in biological samples (e.g., low
abundance, difficult in enrichment) [37, 64].

A chemoproteomic approach termed activity-based pro-
tein profiling (ABPP) addresses many of the aforementioned
challenges. ABPP uses active site-directed chemical probes
to directly assess enzyme activities on a proteome-wide
scale in complex biological systems (Fig. 1) [22, 48, 52].
These activity-based probes (ABPs) consist of a chemical
reactive group for binding and covalently labeling the active
or reactive sites of enzymes that share conserved mechanis-
tic and/or structural features; and a reporter tag (e.g., biotin
or rhodamine) for the detection, enrichment and identifica-
tion of labeled enzymes from proteomes. Enzyme activities
can be read-out in any biological sample (cell line, tissue,
fluid, tumor) by SDS-PAGE and in-gel fluorescence

scanning (for ABPs with a fluorescent tag—gel-based
ABPP), or through avidin enrichment and MS-based quan-
titation and identification of tryptic peptides [for ABPs with
a biotin tag—ABPP coupled with Multidimensional Protein
Identification Technology (ABPP-MudPIT)] [32]. There are
currently several ABPs for specific enzyme classes includ-
ing hydrolases, kinases, oxidoreductases, glycosidases,
nitrilases, cytochrome P450s, and glutathione-S-transferases
[52]. There are also reactivity-based probes for mapping
hyper-reactive and functional amino acid residues in the
proteome, as has been shown with hyper-reactive cysteines
[74, 75]. ABPs facilitate enrichment of specific classes of
proteins based on shared functional properties and therefore
assist in the characterization of low abundance as well as
uncharacterized proteins. Importantly, these probes selec-
tively label active enzymes, but not their inactive forms,
facilitating characterization of changes in enzyme activities
that occur without alterations in protein or transcript expres-
sion [31, 32].

ABPP has been used to identify dysregulated meta-
bolic pathways in various diseases such as cancer and
obesity [8–10, 54]. One enzyme class for which ABPP
has been used extensively has been the serine hydrolase
superfamily, one of the largest and most diverse meta-
bolic enzyme classes in mammalian proteomes, which
include esterases, thioesterases, lipases, amidases, and
proteases [41]. The fluorophosphonate ABPs for the
serine hydrolase superfamily has been used to discover
several dysregulated enzymes in disease [31, 32, 54,
68]. Serine hydrolases KIAA1363 and monoacylglycerol
lipase (MAGL) were found to be highly expressed
across multiple types of human aggressive cancer cells
and malignant primary tumors, where they drive tumor-
igenicity and aggressiveness of cancer cells [31, 32, 54].
Shields and colleagues found that the activity of the
serine hydrolase retinoblastoma binding protein 9
(RBBP9) was heightened in pancreatic carcinomas to
promote anchorage-independent growth and pancreatic
carcinogenesis through overcoming transforming growth
factor-β-mediated antiproliferative signaling [68].

Several ABPs for proteases have also been used to
identify dysregulated enzyme activities in cancer. Upon
profiling, secreted serine hydrolase activities in highly hu-
man breast cancer cells, Jessani et al. found that the serine
proteases uPA and tPA were secreted from highly tumori-
genic and aggressive human breast cancer cells, indicating
that these proteolytic activities can contribute to heightened
cancer pathogenicity [31]. Bogyo and colleagues have used
quenched near-infrared fluorescent ABPs of cysteine pro-
teases including caspases to image these enzymes in tumor
xenografts in vivo and ex vivo [10, 21]. These probes emit
a fluorescent signal only when covalently bound to the
active site of the enzyme and can be used to monitor target
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occupancy in vivo of protease inhibitors or drug efficacy,
directly by imaging the tumor [10, 21]. The metalloprotei-
nase ABP was used to identify neprilysin activity in ag-
gressive melanoma cells [60].

ABPP can also be used to identify protein–protein inter-
action partners by embedding photocrosslinkable tags (e.g.,
benzophenone or diazarine) and bioorthogonal handles
(e.g., alkyne). Salisbury et al. treated melanoma cancer cells

Fig. 1 Activity-based protein profiling (ABPP). aABPP uses active site-
directed chemical probes to assess the functional state of large numbers of
enzymes directly in complex proteomes. Activity-based probes (ABPs)
consist of a reactive group, a spacer arm, and a detection handle [e.g.,
fluorophore such as a rhodamine (Rh) or biotin (B)]. In a typical ABPP
experiment, a proteome is reacted with the ABP and read-out either by
fluorescence on a 1D-SDS-PAGE gel for rhodamine-ABPs (above), or by
avidin enrichment, on-bead tryptic digest, and identification and quanti-
fication of peptides by Multidimensional Protein Identification Technol-
ogy (MudPIT) for biotinylated-ABPs (below). b ABPP can also be used

in a competitive format to assess potency and selectivity of inhibitors in
complex proteomes. Inhibitors can compete with the ABP for binding
enzyme active sites and enzyme inhibition can be read-out by loss of
fluorescence on a SDS-PAGE gel (using a rhodamine-ABP) or loss of
spectral counts by mass spectrometry (using a biotinylated-ABP). c
Competitive ABPP can be adapted to an HTS format using fluorescent
polarization screening (fluopol-ABPP). Assays are conducted in 384-well
plates with pure or recombinant protein. Fluorescent polarization is high if
the ABP is bound to the active site of the enzyme, and low if an inhibitor
is bound to the enzyme and prevents ABP binding
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in situ with a suberoylanilide hydroxamic acid (SAHA)-
based histone deacetylase (HDAC) ABP (SAHA-BPyne)
with a benzophenone and an alkyne, then exposed cells to
UV radiation to crosslink HDAC-interacting proteins [63].
This proteome was then subjected to “click chemistry” to
append detection handles, such as rhodamine- or biotin-
azide to react with the SAHA-BPyne-labeled proteins. Sub-
sequent proteomic analysis of pulled-down proteins not only
revealed HDAC enzyme activities, but also members of the
HDAC complex, including CoREST, p66β, methyl CpG
binding protein 3 (MBD3), and the metastasis-associated
proteins MTA1 and MTA2 [63].

While ABPs for specific enzyme classes have been in-
strumental in identifying and characterizing dysregulated
metabolic pathways in diseases, there are several enzyme
classes for which there are no cognate ABPs. Weerapana et
al. recently developed a broader ABPP platform for map-
ping functional amino acids within the proteome using a
reactivity-based probe for mapping hyper-reactive and func-
tional cysteines [75]. This cysteine reactivity-based probe
consists of: (1) an iodoacetamide probe to label cysteine
residues in proteins; (2) an alkyne handle for “click chem-
istry” conjugation of probe-labeled proteins that can be
appended to (3) an azide-functionalized TEV-protease rec-
ognition peptide conjugated to biotin for streptavidin en-
richment of probe-labeled proteins, and (4) an isotopically
coded valine for quantitative MS measurements of
iodoacetamide-labeled peptides across multiple proteomes.
The authors globally identified hyper-reactive and function-
al cysteines with a wide range of activities, including nucle-
ophilic and reductive catalysis and sites of oxidative
modification. The authors even demonstrated that quantita-
tive reactivity profiling can form the basis for screening and
functional assignment of cysteines in computationally
designed proteins, where it discriminated catalytically active
from inactive cysteine hydrolase designs [75].

Collectively, ABPP complements standard genome se-
quencing, transcriptomic, and proteomic methodologies in
identifying alterations not only in protein expression, but
also in enzyme activities in pathological states.

Development of pharmacological tools for dissecting
metabolic pathways

While ABPP is a useful and important chemoproteomic
platform that provides the ability to assess enzyme activities
on a global proteomic scale, tools to perturb the activity of
these enzymes are required to uncover their metabolic or
pathophysiological roles. Genetic tools to knockout, knock-
down, mutate, or overexpress enzymes in living systems
have been incredibly useful in annotating the biochemical
and pathophysiological functions of enzymes. However,

there are several drawbacks to genetic perturbation of
enzymes in organisms including compensation, lack of tem-
poral control, and toxicity and cell or organismal death that
can occur from genetically manipulating the enzyme. De-
veloping pharmacological inhibitors of enzymes are there-
fore critical in overcoming these challenges, in which
enzyme function can be blocked to identify acute versus
chronic changes in a temporally controlled manner while
avoiding any toxicity or adaptation that can occur from
chronic target inactivation. Yet, there is a notable lack of
selective chemical inhibitors for the majority of human
enzymes, which hinders investigations into the biochemical
and (patho)physiological roles of enzymes in physiology
and disease.

Because ABPs or reactivity-based probes bind to active
sites or functional domains of enzymes, inhibitors can be
directly competed with probe labeling (competitive ABPP),
and thus can be used in a competitive format for identifying
both reversible and irreversible enzyme inhibitors and con-
firming target occupancy in situ or in vivo (Fig. 1) [6, 52].
As ABPP globally assesses activities of whole classes of
enzymes or reactivities of proteins, inhibitors can be tested
for potency as well as selectivity. Enzyme inhibition by
small-molecule inhibitors can be read-out by both gel-
based and MS-based ABPP methods using fluorescent-
and biotin-tagged probes, respectively [7, 39, 42]. These
gel-based and MS-based competitive ABPP platforms have
facilitated the discovery and development of highly selec-
tive inhibitors for a multitude of metabolic enzymes, which
have in turn been used for in-depth characterization of the
(patho)physiological roles of these enzymes in living sys-
tems (Fig. 2) [2, 42, 44].

Considering the serine hydrolase superfamily as an ex-
ample, gel-based and MS-based competitive ABPP screen-
ing has enabled selective inhibitor discovery for numerous
serine hydrolases, including metabolic enzymes that break
down endogenous cannabinoid signaling lipids. Among
these are the relatively characterized enzymes fatty acid
amide hydrolase (FAAH) and MAGL, as well as uncharac-
terized enzymes such as KIAA1363 and alpha/beta hydro-
lase domain 6 (ABHD6) (Fig. 2) [16, 39, 42, 46]. For these
specific enzymes, electrophilic scaffolds that specifically
target the serine hydrolase catalytic mechanism, such as
carbamates, ketones, and ureas, were critical in inhibitor
development. For FAAH, which hydrolyzes fatty acid
amides, the urea compounds PF-3845 and PF-04457845
were developed as a highly potent, in vivo active, and
selective irreversible inhibitors of FAAH [2, 3]. Initial scaf-
folds for MAGL inhibitors were found through a competi-
tive ABPP screen with a structurally diverse library of
carbamates. Through medicinal chemistry efforts, JZL184
was developed as the first highly potent and selective, in
vivo active and irreversible inhibitor of MAGL [42]. While
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JZL184 has been used in countless studies to annotate the
role of MAGL and its biological functions, it has weak
cross-reactivity with FAAH and peripheral carboxyles-
terases. Recent studies have provided an even better MAGL
inhibitor KML29, based on a distinct class of O-hexafluor-
oisopropyl carbamates that irreversibly inhibit MAGL with
superior potency and selectivity [13]. While characterized
enzymes can also be assayed by traditional substrate turn-
over assays, uncharacterized enzymes are often unamenable
to inhibitor discovery, hindering further characterization.
However, employing competitive ABPP can circumvent
these issues, since ABPs assess enzyme activity based on
shared catalytic mechanisms or chemical reactivity rather
than the status of enzyme characterization. Highly potent
and selective inhibitors of KIAA1363 and ABHD6, both

serine hydrolases that were completely uncharacterized but
labeled by the serine hydrolase ABP, were developed
through screening of carbamate libraries and subsequent
optimization. KIAA1363 inhibitors include the initially de-
veloped reversible trifluoromethylketone inhibitors and the
irreversible carbamate inhibitor AS115, as well as the re-
cently developed highly selective and in vivo active carba-
mate JW480 [14, 16]. ABHD6 inhibitors include
carbamates such as WWL123 [39].

Bachovchin et al. expanded upon this gel-based ABPP
screening approach for enzyme inhibitors by screening a
library of structurally diverse inhibitors against a library of
serine hydrolases [7]. Using this approach, the authors
found lead inhibitors for nearly 40 % of greater than 70
serine hydrolases screened, including many poorly

Fig. 2 Examples of selective
enzyme inhibitors found
through competitive ABPP. a
Structures of selective
inhibitors for enzymes (in
parentheses) that have been
found through competitive
ABPP platforms. b To ascertain
selectivity of these inhibitors
outside of their cognate enzyme
classes, these small-molecules
can themselves be turned into
activity-based probes by
appending a chemoorthogonal
handle (such as an alkyne or
azide). PF-3845yne and
ABL112 are alkyne-appended
ABP analogs of PF-3845 and
ABL127, respectively. These
probes can be reacted with
proteomes in vitro, in situ, or
even in vivo and proteomes can
be subjected to click chemistry
with biotin or rhodamine-azide
and detected by ABPP-MudPIT
or gel-based approaches,
respectively
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characterized serine hydrolases. Adibekian et al. recently
found 1,2,3-triazole urea compounds as a versatile chemo-
type for developing serine hydrolase inhibitors. They devel-
oped a simple and efficient click chemistry approach to
create substituted triazole ureas, where substituted alkynes
were reacted with in situ-formed azidomethanol to yield 4-
substituted triazoles, which were then carbamoylated to give
triazole urea products. Through this approach, the authors
developed, screened, and optimized a triazole urea library
and found highly selective in situ and in vivo active inhib-
itors AA74-1, AA39-2, and AA44-2, for uncharacterized
serine hydrolases acyl peptide hydrolase, platelet activating
factor acetylhydrolase 2, and ABHD11, respectively [1].
Adibekian et al. ascertained the selectivity of these inhib-
itors both in situ and in vivo using a quantitative isotopic
labeling-based proteomic approach adapted for competitive
ABPP—“quantitative stable isotope labeling of amino acids
in culture/mice” (SILAC/SILAM)-based competitive
ABPP-MudPIT (ABPP-SILAC/SILAM). This procedure
consists of labeling or feeding cells or mice, respectively
with “light” [12C6,

14N2]-L-lysine and [12C6,
14N2]-L-argi-

nine (treated with inhibitor) or “heavy” [13C6,
15N2]-L-lysine

and [13C6,
15N2]-L-arginine (treated with DMSO or vehicle).

The cells or tissue lysates are then labeled with the biotin-
labeled ABP and mixed together in a 1:1 ratio. Enzyme
activities are enriched through avidin beads, subjected to
on-bead tryptic digest, and analyzed by high-mass accuracy
MS [1].

While gel-based and MS-based ABPP have yielded in-
valuable pharmacological inhibitors for investigating en-
zyme function, gel-based formats are limited in throughput
to compound libraries of modest size (200–300 com-
pounds). Advancements in robotics technologies coupled
with the generation of structurally diverse small-molecule
libraries have led to the expansion of high-throughput
screening (HTS) programs in academia and industry. The
screens range from traditional in vitro substrate assays for
enzyme inhibitors to in situ screens that profile cellular
phenotypes [4, 38]. Requisite to these HTS screens for
enzyme inhibitors is a reproducible, robust, and highly
sensitive assay for measuring enzyme activity. While this
is manageable for enzymes with known substrates, these
assays are very challenging for uncharacterized enzymes.
As such, the unannotated portion of the human proteome
(30–50 %) has been largely neglected for inhibitor discov-
ery. To overcome these challenges, Bachovchin et al. recent-
ly developed a highly versatile HTS-compatible ABPP
platform that uses fluorescence polarization as a read-out
for competitive ABPP (fluopol-ABPP) (Fig. 1) [5]. This
method can be readily adapted to different classes of
enzymes and ABPP probes and has been successfully used
to identify inhibitors for a multitude of enzymes, including
RBBP9, glutathione-S-transferase omega, protein methyl

esterase 1 (PME1), protein arginine deiminase, and protein
arginine methyltransferases [5, 8, 35].

While competitive ABPP with enzyme-class or
reactivity-specific ABPs can be used to assess inhibitor
selectivity across its enzyme or reactivity class, a caveat of
this technology is its inability to assess inhibitor selectivity
outside of its cognate class. However, the highly selective
inhibitor can itself be turned into an ABP, if the inhibitor is
irreversibly binding to its target, to comprehensively assess
its selectivity by appending an alkyne for subsequent con-
jugation of a biotin or rhodamine handle for MS or in-gel
fluorescent detection, respectively, of off-targets. This has
been successfully achieved with the FAAH inhibitor PF-
3845 and PME1 inhibitor ABL127, and their alkyne-
appended analogs PF-3845yne and ABL112, showing that
these inhibitors bind only to FAAH and PME1, respectively
(Fig. 2) [2, 8].

Competitive ABPP (gel-based ABPP, ABPP-MudPIT,
fluopol-ABPP, or ABPP-SILAC/SILAM) is thus a powerful
platform for developing pharmacological tools to inhibit
metabolic enzymes and investigate the associated biochem-
ical and (patho)physiological functions. Should the charac-
terized metabolic enzymes or resultant inhibitors be found to
be therapeutically useful, these approaches can provide lead
compounds for further clinical development.

Functional metabolomics for mapping and elucidating
(patho)physiological roles of metabolic pathways

We have thus far introduced chemical approaches that can
be used to directly assess enzyme activities in complex
biological samples for identification of pathologically rele-
vant metabolic enzymes, as well as platforms for developing
selective small-molecule inhibitors to inactivate these
enzymes. These enzyme inhibitors can, in turn, be used to
investigate the role that these enzymes play in metabolism,
physiology, and disease using functional metabolomic tech-
nologies. Functional metabolomics can yield information on
the substrate/product relationship of an enzyme as well as
metabolites that are up or downstream of the substrate and
product in a specific biological system. This information can
be used in turn to place the enzyme into a biochemical
pathway or larger metabolic network. Here, we introduce
several metabolomic approaches and will highlight recent
examples of how these technologies have yielded novel
insights into the biochemical and (patho)physiological roles
of enzymes (Fig. 3).

Traditional metabolomic approaches utilize a targeted
approach, in which one comparatively quantitates the abun-
dance of a known set of metabolites by targeting for their
cognate mass over charge ratios (m/z), fragments of parent
m/z ions, or magnetic resonance using mass spectrometry or
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NMR. Using these approaches, one can quantify the levels
of several hundred to several thousand known metabolites
[15, 30, 58]. While targeted metabolomics is a useful ap-
proach, it is limited to quantifying metabolites that are
known. While a known set of nucleotides and amino acids
constitute DNA, RNA, and proteins, the metabolome is
significantly more physicochemically diverse in its content
and complexity, and our knowledge of the metabolomic
landscape is incomplete. Furthermore, the vast numbers of
uncharacterized enzymes in the mammalian genome may
catalyze reactions on metabolites that have not yet been
identified. Thus, discovery-based metabolomics (DMP)
has arisen as a powerful untargeted and unbiased approach
for globally identifying metabolites that may be altered upon
manipulation of enzyme activity or in disease states [59].
Instead of targeting for specific masses on MS, DMP con-
sists of scanning a large m/z range. The large resulting
datasets are then analyzed through bioinformatics platforms
(e.g., XCMS) which identify, align, integrate, and compare
all m/z ion intensities between different biological samples
[70, 71]. While both targeted and untargeted approaches
measuring steady-state levels of metabolites have been in-
strumental in elucidating enzyme and pathway functions,
these methods do not provide information on metabolic
flux. Metabolic flux analysis (MFA) provides this informa-
tion by measuring the amount and rates of isotopic incorpo-
ration of metabolites into metabolic intermediates [28].
Isotopic metabolites that have been used for MFA include
metabolites such as [13C]glucose, [13C]glutamine, [13C]ac-
etate, or 2H2O. Important considerations in MFA include the
need for detailed information on the metabolic network
being studied and appropriately selected isotopically labeled
tracer substrate [18]. MFA has typically been used in a
targeted fashion to trace the series of enzymatic reactions
in which the selected tracer substrate is used to quantify the
metabolic rate of utilization of that substrate [65]. Unique
advantages of MFA include non-invasive measurements of
metabolism and importantly, the ability to calculate kinetics,
i.e., the movement of a given metabolite through enzymatic
networks [27]. We will also discuss recent advances in mass
spectrometry-based metabolomic imaging approaches that
allow for morphological mapping of metabolic pathways.
Each of these approaches has been used to provide valuable
insights into enzyme function and mapping novel metabolic
pathways in normal physiology and disease.

Cancer cells possess fundamentally altered metabolism
that drives cancer pathogenicity and progression. Recent
years have seen an explosion of interest in mapping the
altered biochemistry that underlies cancer transformation
and proliferation. Jain et al. recently used multiple-reaction
monitoring-based liquid chromatography MS (LC-MS/MS)
metabolomic profiling to systematically map the consump-
tion and release (CORE) profiles of 219 metabolites

spanning the major pathways of intermediary metabolism
across the NCI-60 panel of human cancer cell lines [30].
CORE provides a systematic and quantitative assessment of
cellular metabolic activity by relating metabolite concentra-
tions in spent medium from cultured cell to metabolite
concentrations in baseline medium. The authors identified
140 metabolites that were either present in fresh media or
released by at least one cancer cell line. They found that
glycine and mitochondrial glycine biosynthetic pathways
were correlated with rates of proliferation across these cells,
and mortality in breast cancer patients. Antagonizing gly-
cine uptake or biosynthesis preferentially impaired rapidly
proliferating cells, indicating that glycine metabolism may
be a pathway that can be targeted for cancer therapy [30].

In another study, Cheng et al. profiled 45 distinct metab-
olites in plasma by targeted LC-MS/MS to identify meta-
bolic risk factors in individuals that were susceptible to
diabetes mellitus or cardiovascular disease. The authors
showed that metabolic risk factors were associated with
multiple metabolites including branched-chain amino acids,
other hydrophobic amino acids, tryptophan breakdown
products, and nucleotides. They observed strong associa-
tions of metabolic risk factors with glutamate (a well-
documented effect), though the inverse effect was observed
with glutamine and a glutamine-to-glutamate ratio, a here-
tofore unreported phenomenon. To confirm the epidemio-
logical data, the authors found that glutamine administration
in mice reduced blood pressure and improved glucose tol-
erance [15].

In another example of using targeted metabolomics to
map altered metabolism in biology, the LIPID MAPS con-
sortium performed targeted lipidomic and transcriptomic
analyses of the response of the mouse macrophage RAW
cell line to Kdo2-Lipid A2. They found that RAW cell
stimulation elicits immediate responses in fatty acid metab-
olism represented by increases in eicosanoid synthesis, and
delayed responses characterized by sphingolipid and sterol
biosynthesis. They also showed lipid remodeling of glycer-
olipids, glycerophospholipids, and prenols, indicating that
activation of the innate immune system by inflammatory
mediators leads to alterations in a majority of mammalian
lipid categories [20].

DMP-based metabolomics has been used numerous times
to identify the role of enzymes in normal physiology and in
disease. Saghatelian et al. used DMP to investigate the
function of FAAH, an enzyme that was known to degrade
the endogenous cannabinoid signaling lipid N-arachidonoyl
ethanolamine (anandamide). Previous studies had shown
that FAAH is the primary hydrolase for N-acylethanol-
amines (NAEs) [24]. Untargeted metabolomic profiling of
FAAH −/− and FAAH +/+ brains revealed substantial eleva-
tions in NAE levels in the −/− brain, consistent with the role
of FAAH in degrading NAEs [62]. However, this profiling
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effort also revealed a distinct class of N-acyl taurines (NATs)
that were also elevated greater than tenfold, revealing a new
class of substrates for this enzyme [62]. Subsequent studies
have shown that NATs can activate TRP ion channels,
indicating that NATs may act as signaling lipids in vivo
[61]. FAAH inhibitors developed through screening and
competitive ABPP efforts, such as PF-3845 and PF-
04457845, have been shown to recapitulate elevations in
brain NAE levels and exhibit cannabinoid-mediated anti-
hyperalgesia in several inflammatory pain models, and
FAAH inhibitors are now in clinical development for pain
[2, 3].

Untargeted metabolomics was also used to investigate the
role of the uncharacterized serine hydrolase KIAA1363,
identified by ABPP to be highly upregulated across multiple
types of aggressive human cancer cells and primary tumors
[16]. Competitive ABPP was employed to develop the high-
ly selective, irreversible KIAA1363 inhibitor AS115, and
pharmacological or genetic inactivation of KIAA1363 led to
reductions in the ether lipid monoalkylglycerol ether
(MAGE). Further analysis showed that KIAA1363 deacety-
lates 2-acetyl monoalkylglycerol ether, and that inhibition of
KIAA1363 reduced MAGE and the levels of the down-
stream metabolite alkyl lysophosphatidic acid (alkyl LPA),
a highly potent oncogenic signaling lipid. Furthermore, the
authors showed that genetic knockdown of KIAA1363 re-
duced LPA signaling to thwart cancer cell migration and
ovarian tumor xenograft growth [16]. Chang et al. showed
that pharmacological blockade of KIAA1363 with JW480
(developed through competitive ABPP platforms) impaired
ether lipid metabolism and reduce prostate cancer xenograft
growth in mice [46]. Recently, Chang et al. developed an in
vivo imaging probe for KIAA1363 in tumors, that
KIAA1363 is largely localized to the endoplasmic reticulum
of cancer cells [12].

ABPP was also used to identify MAGL as a highly
upregulated serine hydrolase in aggressive human cancer
cells and high-grade human tumors [53, 54]. Both pharma-
cological inhibition of MAGL by the highly selective inhib-
itor JZL184 (developed using competitive ABPP) and
genetic inactivation of MAGL in aggressive cancer cells
led to elevations in substrate monoacylglycerols, but also
reductions in global free fatty acid (FFA) levels. Additional
downstream metabolites such as the protumorigenic signal-
ing lipids prostaglandins and LPA were also reduced upon
blockade of MAGL. These results were quite intriguing
since MAGL does not control FFA levels under normal
physiological conditions. The authors thus found that ag-
gressive cancer cells rewire their metabolism to confer a
novel pathophysiological function to MAGL in order to
control a FFA network enriched in lipids that drive cancer
progression [54]. Consistent with this premise, the authors
showed that blocking MAGL led to impairments in cancer

cell migration, invasion, and in vivo tumor growth, which
could be rescued by adding back fatty acids, prostaglandins,
or LPA in situ or in vivo [54]. Stable isotopic labeling of
cancer cells with isotopic MAGs or FFAs were used to
confirm that these pathways were driven through direct
biochemical conversion of MAGs to FFAs by MAGL to
form oncogenic lipids [54].

MAGL was previously known to hydrolyze MAGs as the
penultimate step in triacylglycerol lipolysis [41, 43]. One of
these MAGs is the endocannabinoid signaling lipid 2-
arachidonoylglycerol (2-AG) [42]. Several studies have
shown that MAGL blockade with JZL184 has been shown
to exert cannabinoid-mediated anti-hyperalgesia in several
pain models and anxiolysis [33, 34, 42]. Interestingly, ge-
netic ablation or chronic and complete pharmacological
inactivation of MAGL causes functional desensitization of
the cannabinoid system, negating the cannabinoid-mediated
beneficial effects [66]. This finding underscores the utility
of pharmacological tools in investigating the biological roles
of enzymes before compensatory effects can occur. In a
recent study, targeted and untargeted metabolomic profiling
of MAGL −/− mouse brains revealed not only elevations in
the endocannabinoid 2-AG, but also significant reductions
in bulk arachidonic acid (AA) and downstream
cyclooxygenase-mediated pro-inflammatory eicosanoids
which include prostaglandins and thromboxanes [55]. This
was surprising since historically, AA has been thought to
derive from phospholipase-mediated hydrolysis of phospho-
lipids. Instead, metabolomic profiling revealed that MAGL
coordinately regulates endocannabinoid and eicosanoid lev-
els in certain tissues such as the brain, liver, and lung,
whereas cytosolic phospholipase A2 mediates AA release
in the spleen and gut. The authors showed that pharmaco-
logical or genetic inactivation of MAGL with the selective
inhibitor JZL184 produces potent anti-inflammatory effects
and elicits neuroprotective effects in Parkinson’s disease and
Alzheimer’s disease mouse models [55, 57]. In a different
study, Patti et al. recently used untargeted metabolomics to
identify novel metabolites that were linked to neuropathic
pain. The authors showed that sphingomyelin-ceramide

Fig. 3 Metabolomic approaches for investigating metabolism. a For
targeted metabolomics, specific known metabolites are targeted by
commonly through multiple-reaction monitoring (MRM) by LC-MS/
MS, which measures the abundance of a metabolite-specific fragment
(ms2) that arises from fragmentation of its corresponding parent mass
(ms1). b For untargeted or DMP-based metabolomics, the mass spec-
trometer scans a large mass range (m/z 100–1,200) in an unbiased
manner for both known and unknown metabolites. The resulting large
datasets are then analyzed by bioinformatics programs (e.g., XCMS),
which aligns, quantifies, and identifies metabolites that are significant-
ly altered between two comparison groups. (n normal, d disease) c For
metabolic flux analysis, cells or mice can be treated with isotopic
tracers such as [13C]glucose or [13C]glutamine and MRM-based LC-
MS/MS or GC/MS can be used to quantify 13C-incorporation rates into
cellular metabolites
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metabolism is altered in the dorsal horn of rats with neuro-
pathic pain and that the upregulated, endogenous metabolite
N,N-dimethylsphingosine induces mechanical hypersensi-
tivity in vivo [56].

Another intriguing finding that has arisen out of DMP
surrounds the neomorphic function of mutant isocitrate de-
hydrogenase 1 (IDH1), which had been previously shown to
be mutated in a major subset of low-grade gliomas and
secondary glioblastomas and leukemic cancers [29, 51,
77]. These mutations were found to occur at a single amino
acid residue of IDH1, arginine 132, which is most common-
ly mutated to histidine. Dang et al. found that stable trans-
fection of this mutant IDH1 into glioblastoma cells resulted
in a dramatic accumulation of a novel oncometabolite 2-
hydroxyglutarate (2-HG), using untargeted metabolomic
profiling [19]. Surprisingly, while the wild-type IDH1 uses
isocitrate and NADP+ as a substrate to make α-ketoglutarate
and NADPH, Dang et al. found that mutant IDH1 consumed
NAPDH and reduced α-ketoglutarate to 2-HG. These stud-
ies provided the first evidence for a mutated enzyme in
cancer conferring not only a loss of endogenous function,
but also a neomorphic function to yield an unforeseen
metabolite, and underscored the utility of using untargeted
metabolomic approaches towards revealing novel aspects of
metabolism. Subsequent studies have shown that 2-HG acts
as an inhibitor of histone demethylases and the TET family
of 5-methylcytosine hydroxylases [17, 23]. Recent studies
have shown that mutations in IDH1 are sufficient to estab-
lish the glioma hypermethylator phenotype, in which intro-
duction of mutant IDH1 into primary human astrocytes
alters specific histone marks, induces extensive DNA hyper-
methylation, and reshapes the methylome in a similar man-
ner to alterations observed in certain gliomas [45, 72].

MFA has been used for decades to map biochemical
pathways in living systems in situ and in vivo, but we will
focus our examples on recent studies that have uncovered
unique aspects of metabolism in disease. Locasale et al.
coupled isotopic labeling approaches in cancer cells with
sensitivity-enhanced nuclear magnetic resonance (NMR)-
based two dimensional heteronuclear single quantum corre-
lation spectroscopy to quantify steady-state levels of
glucose-derived carbons after 24 h labeling of [13C]glucose
in human cancer cells [40]. Consistent with the “Warburg
effect” of cancer cells, the highest intensity bins contained
lactate peaks. Locasale et al. interestingly also found that a
bin containing [13C]glycine was nearly as abundant as those
containing [13C]lactate. The authors showed that cancer
cells divert a relatively large amount of glycolytic carbon
into serine and glycine metabolism through phosphoglycer-
ate dehydrogenase (PHGDH). They found that human can-
cers have a high frequency of PHGDH genomic
amplification and that decreasing PHGDH expression
impairs proliferation in amplified cancer cell lines.

Additionally, Locasale et al. reported that increasing
PHGDH in mammary epithelial cells disrupts acinar mor-
phogenesis and induces other phenotypic alterations that
may predispose cells to transformation [40]. Several recent
studies performing metabolic flux analysis on cancer cells
using [13C]glucose and [13C]glutamine have shown that
under hypoxia or mitochondrial dysfunction, cancer cells
undergo a switch in which citrate, an important lipogenic
precursor, is produced not from glucose carbons, but pri-
marily from glutamine via reductive carboxylation of α-
ketoglutarate to isocitrate via isocitrate (IDH)1 or IDH2
[47, 49, 67, 76]. These studies showed differential incorpo-
ration of 13C-labeled carbons arising from [13C]glucose or
[13C]glutamine labeling in cells by mass spectrometry or
NMR. Wise et al. showed that IDH2 knockdown impairs
cell proliferation [76].

A relatively recent development in the field of metabo-
lomics is imaging mass spectrometry, using matrix-assisted
laser desorption ionization (MALDI IMS) (Fig. 3). The MS-
based metabolomics techniques described thus far have
relied on extraction of metabolites from a cell or tissue,
destroying metabolite location data [50]. MALDI IMS, on
the other hand, is able to detect abundance and identify
metabolites in a tissue while maintaining the location of
those metabolites. This technology allows the generation
of an image containing four dimensions of data—metabolite
localization on x and y axes, selected metabolite m/z, and
relative abundance of the metabolite as represented by pixel
density [50]. A thin section of tissue is coated by one of
various methods with the MALDI matrix, followed by a
laser that generates ions at the site of the laser spot on the
tissue. These ions are then analyzed by a time of flight
(TOF) mass analyzer to give accurate mass to all ions
generated. An image is then generated containing location
and density information for a selected m/z. Murphy et al.
validated this method of MALDI IMS [50] using a direct
sublimation approach of depositing MALDI matrix (2,5-
dihydroxybenzoic acid) and imaging using MALDI-TOF
on mouse kidney and brain sections. The authors were able
to determine the locations of multiple lipid species based on
the ions produced by each species, generating an ion map
that represented the distribution of each lipid. A study by
Hankin et al. where traumatic-brain injury and ischemia/
reperfusion injury models in rat brain were characterized
using MALDI MSI revealed unique, localized events related
to lipid biochemistry following injury [26]. In the ischemia/
reperfusion model, where the CA1 region of the hippocam-
pus is particularly vulnerable, pits, holes, and a loss of
substructure definition were observed when imaging with
the lipid palmitoyl-oleoyl-phosphatidyl choline as the abun-
dant ion. An additional ion, ceramide (d18:1/18:0) was
detected in greater abundance in the ischemic brain com-
pared to control, and this ion was the most abundant ion in
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the analyzed mass range of the injured brain. MALDI IMS
showed a specific increase of ceramides in the CA1 region
of the hippocampus, suggesting a role for sphingomyelin
metabolism in hippocampal neuronal cell death [26]. These
findings underscore the importance metabolomic imaging
approaches and the ability to localize metabolite changes in
a location-specific manner. As the sensitivity of detecting
metabolites improves, this technology will likely become a
much more widely used approach for metabolomics
profiling.

Challenges in mapping metabolic pathways

While the approaches described here have been useful in
annotating the (patho)physiological roles of metabolic path-
ways, there are still several challenges moving forward.
While ABPP and competitive ABPP are powerful
approaches to assess enzyme activities and develop phar-
macological tools to perturb these activities, we do not yet
have activity- or reactivity-based probes for every enzyme
class, and therefore lack full coverage of metabolic activities
in proteomes. While the metabolomic platforms described
here collectively provide an ever-expanding view of the
metabolomic landscape, we are likely still not able to detect
metabolites that are low abundance or possess intransigent
analytical properties (e.g., difficult to detect due to poor
ionization). There are thus areas of metabolism that are still
currently not easily amenable for characterization. These
challenges will have to be addressed with the advent of
new chemical tools coupled with advancements in metab-
olomic technologies. Furthermore, any enzyme that is an-
notated through these approaches will have to be
incorporated into larger metabolic networks and will likely
have to be coupled with more advanced computational
approaches for metabolic flux modeling and will have to
be integrated with currently known metabolic pathways.

Conclusion

In this review, we have provided an overview of specific
chemical approaches towards investigating enzyme function
and mapping metabolic pathways in normal physiology and
disease. We have showed examples of how these individual
technologies have been used to elucidate important bio-
chemical features that drive physiological processes or dis-
ease progression. We have also provided a few examples
(e.g., MAGL and KIAA1363) of how these chemical
approaches can be integrated with metabolomic profiling
to fully annotate enzyme function. These studies provide a
general workflow for future investigations, wherein chemo-
proteomic approaches can identify enzyme activities of

interest, pharmacological tools can be developed to perturb
enzyme function, and in turn be used in conjunction with
targeted, untargeted DMP, MFA, and MS-based metabolo-
mics imaging approaches to comprehensively annotate bio-
chemical pathways. While the technologies and chemical
tools employed in studying metabolism and metabolic
enzymes need to be advanced and expanded upon, we
currently now have the technology for annotating the vast
landscape of uncharacterized or dysregulated metabolic
pathways. Tapping into these uncharacterized metabolic
pathways will undoubtedly open up novel targets for thera-
peutic intervention of diseases.
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